DRAW WIRE SENSOR

ワイヤ式変位センサ

このシリーズの関連資料: インストレーションガイド CANopenマニュアル 可変電子機器スクイーザ データシートTEDS コネクタ

SX135 SERIES

目次	
	2
技術データインクリメンタル	3
技術データデジタル WCAN	4
技術データデジタルアブソリュート	5
メカニカルデータ	6
図面	6
オプション	9
アクセサリ	10
オーダーコード	11

主な特徴

- 計測長 10 ~ 42.5 m
- アナログ出力: ポテンショメーター, 電圧, 電流
- 可変式電圧出力(オプション)
- デジタルインクリメンタル出力: RS422 (TTL), Push-Pull
- デジタルアブソリュート出力: CANopen, SSI, Profibus, EtherCAT, Profinet
- 直線性 ±0.02%. fsまで
- 保護等級: IP67
- 温度使用範囲: -20...+85° C (オプション: -40° C)
- 高ダイナミクスと耐干渉性
- 特注制作も可能
- TEDS付きコネクタオプション

技術データ アナログ出力

計測長 1)	[m]	10	12	15	20	25	30	35	40	42.5		
直線性	[%]		±0.1									
直線性 高(オプション)	[%]		±0.05									
分解能			下記出力タイプ参照									
センサーエレメント			ハイブリットポテンショメーター									
接続			M12コネクタ またはアキシャルケーブル接続 (TPE cable)									
保護等級		IP65, オプション IP67										
湿度					相対的に最	是大90%,結	露なきこと	きこと				
温度			下記出力タイプ参照									
メカニカルデータ		ワイヤ張力、最大速度、最大加速度は <u>"Mechanical Data"</u> を参照										
ハウジング	ングアルミニウム、アルマイト処理、					〜処理、スプ	リングケース	CPA6				
ワイヤ			V2A Ø 0.5 mmステンレス									
重量	[g]				3200 ~ 500	00,計測長に	よって異な	ります				

¹⁾ 要望に応じてほかの計測長も対応可能

電気データ アナログ出力

出力タイプ	ポテ	ショメ・	ーター		雷	圧1)		電流	雷圧 (可変式)
オーダーコード	1R	5R	10R	4,5V	5V	55V	10V	420A	5VT	10VT
出力	1 kΩ	5 kΩ	10 kΩ	0.54.5 V	05 V	-5+5 V	010 V	420 mA	05 V	010 V
入力		□ 最大 30 V			830 VDC		1230 VDC	1230 VDC ²⁾	835	VDC
推奨カーサ電流		<1 μΑ					-			
最大消費電流		-			最大 25 m	A (無負荷時	·)		-	
最大消費電力					-				最大 2	00 mW
電流出力		-			曼大10 mA, 晶	曼初負荷 10	kΩ	最大 50 mA (エラー時) ³⁾	最大 1 最小負	0 mA, 荷 1 kΩ
ダイナミクス	-			<3 n	ns @ 0100	% / 1000 %)	<1 ms from 0100 % and 1000 %	1 r	ms
分解能				理論上無限	小、ノイズ	により制限	されます		1 r	nV
ノイズ	パワー	供給の質り 影響で	こ されます		0.5	mV_{eff}		1.6 μA _{eff}	2 m	${\sf NV}_{\sf eff}$
逆極性保護		-				ā	59		-	-
短絡防止機能		-			ā	あり		-	b	59
使用温度範囲					-20+	85℃/オプ	ション: -40+	85 ℃		
温度係数	±	£0.0025 %/	K		0.003	37 %/K		0.0079 %/K 0.0016 %/K		
EMC(電磁両立性)		-	EN 61326-1:201					13に準拠		
回路	Cursor GND V +V +V +1			Signal GND _{Signal} +V GND +V +V			+V Signal A +V +V	Signa +V	MFL GND V	

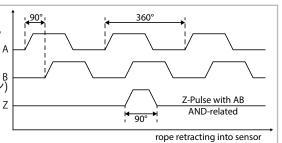
MFL = multi-functional line

¹⁾ ガルバニック絶縁 ²⁾ 負荷: 250 Ω (最大. 500 Ω) ³⁾ 最大負荷 0.5 kΩ

技術データーデジタル出力インクリメンタル

計測長1)	[m]	10	12	15	20	25	30	35	40	42.5	
直線性	[%]					±0.05					
直線性 高 (オプション)	[%]		±C).02 (分解能6	パルス/mm	以上のエン	ノコーダーを	選択した場	計合)		
分解能1)	[パルス/mm]		0.3/3/6/15(4重エッジ抽出により分解能を4倍に上げることができます。)								
Zパルス距離	[mm]		333.33								
センサーエレメント		光学式ディスク付きインクリメンタルエンコーダー									
出力信号		A, B ,Z パルス (+反転パルス /A, /B &/Z)									
接続		M12 コネクタまたはケーブル接続(PVC)									
保護等級					IP6	65,オプション IP67					
湿度		相対的に最大90 %、結露なきこと									
使用温度範囲	[°C]					-20+85					
メカニカルデータ				ワイ	イヤ張力、最	是大速度、 最	曼大加速度に	‡ <u>"Mechanica</u>	al Data" 参照		
ハウジング				-	アルミニウム	、アルマイ	ト処理、スプ	プリングケー	スPA6		
ワイヤ					Ø 0.5	mmV2Aスラ	テンレス				
重量	[g]			32	200 ~ 5000,	計測長によ	って異なり	ます			

¹⁾ その他の計測長、分解能はお問い合わせください


電気データ デジタル出力インクリメンタル

出力タイプ		ラインドライバ L RS422 (TTL 互換性)	プッシュプル G (HTL)		
供給電圧 +V	[VDC]	5 ±5 %	1030		
消費電流 (無負荷時)	[mA]	最大 90 (通常 40)	最大 100 (通常 50)		
負荷電流/チャンネル	[mA]	最初	大 ±20		
パルス周波数	[kHz]	最	大 300		
信号レベル high	[V]	最小 2.5	最小 +V -1		
信号レベル low	[V]	最.	大 0.5		
推奨回路		Sensor Circuit $+5V$ A $0V$ $\overline{Z} = 1\overline{Z0}\Omega$	Sensor $Circuit$ $A \longrightarrow R_L \longrightarrow $		

出力信号 デジタル出力インクリメンタル

出力信号

((この図は反転信号なしの場合を示しております:ワイヤ巻取り時のタイムライン)

技術データ デジタル出力アブソリュート CANOPEN(WCAN)

計測長	[m]	10	12	15	20	25	30	35	40	42.5			
直線性	[%]					±0.1							
再現性	[%]					±0.1							
分解能					計測	側長の0.002	2 %						
センサーエレメント			ポテンショメーター										
接続		M12 アキシャルコネクタまたはアキシャルケーブル接続(E cable)				
保護等級		IP65, オプション IP67											
湿度					相対的に最	大90%、約	吉露なきこと	-					
使用温度範囲	[°C]		-20+85 / オプション: -40+85										
メカニカルデータ	ワイヤ張力、最大速						最大加速度に	t <u>"Mechanica</u>	al Data" を参	照			
ハウジング		アルミニウム、アルマイト処理、スプリングケースPA6											
ワイヤ		Ø 0.5 mm V2 Aステンレス											
重量	[g]			32	.00 ~ 5000, Ē	†測長によ	って異なり	ます					

電気データ デジタル出力アブソリュートCANOPEN(WCAN)

マニュアル		CANopen (WCAN)
CAN仕様		Full CAN 2.0B (ISO11898)
コミュニケーションプロファイル		CANopen CiA 301 V 4.2.0
デバイスプロファイル		エンコーダ、リニアアブソリュート; CiA 406 V 3.2.0
エラー制御		ハートビート、緊急メッセージ、ノードガード
ノードID		デフォルト:7, SDO(Service Data Object)とスクイーザ(オフライン構成) ¹⁾
PDO (Process Data Obeject)		1xTPDO, 静的マッピング
PDOモード		イベントトリガー, タイムトリガー, Sync-cyclic, Sync-acyclic
トランスミッションレート		1 Mbps, 800, 500, 250, 125, 50, 20 kbps configurable via SDO とスクイーザ(オフライン構成)で設定可能 ¹⁾
統合バス終端抵抗		120 Ω, connectible via SDO (Service Data Object)とスクイーザ(オフライン構成) 1)
バス、ガルバニック分離		No
供給電圧	[VDC]	830
消費電流		通常10 mA @ 24 V, 通常20 mA @ 12 V
計測レート		1 kHz,分解能16-bit
電気保護		逆極性保護
温度係数	[%/K]	0.0014
EMC		DIN EN61326-1:2013, 2014/30/EU指令に適合

¹⁾ オフライン構成の詳細については<u>CANopen manual</u> をご確認ください。

技術データ デジタル出力アブソリュート

タイプ(エンコーダーデータシート参照)		<u>SSI</u>	CANopen (CAN)	Profibus-DP	<u>EtherCAT</u>	<u>Profinet</u>			
マニュアル/ファイル		-	Manual / EDS	Manual / GSD	Manual / XML	Manual / GSDMI			
計測長	[mm]	10 / 12 / 15 / 20 / 25 / 30 / 35 / 40 / 42.5							
直線性	[%]	±0.05							
分解能の拡大縮小 (ソフトウェア上で)		no yes							
標準分解能	[パルス/mm] [bit]	24.58 12 24.58 13							
最大分解能	[パルス/mm] [bit]	- 196.61 - 16							
センサーエレメント		光学式ディスク付きマルチターンアブソリュートエンコーダー							
接続		オーダーコード参照							
供給電圧	[VDC]			1030 (電源の逆極	性保護)				
消費電流 (24 VDC, 無負荷時)	[mA]	最大 50	最大 100	最大	120	最大 200			
保護等級		IP65,オプションIP67							
湿度			相対的に最大90%、結露なきこと						
使用温度範囲	[°C]			-20+85					
メカニカルデータ		ワイヤ張力、最大速度、最大加速度は <u>"Mechanical Data"</u> 参照							
ハウジング			アルミニ	ウム、アルマイト処	理、スプリングケー	スPA6			
ワイヤ		Ø 0.5 mmV2Aステンレス							
重量	[g]		3200 -	~5000, 計測長によ	って異なります				

電気データ デジタル出力アブソリュート

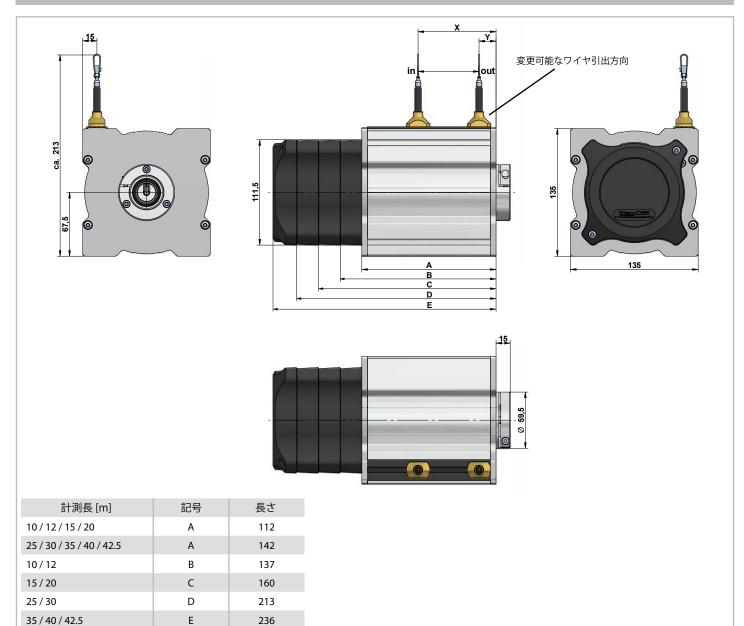
SSI インターフェイス (8.58	863.122X.G222)のパラメーター
コード	Gray
出力ドライバ	RS485 トランシーバタイプ
許容負荷/チャンネル	最大 ±20 mA
シグナルレベル	HIGH: 通常 3.8 V LOW: with I _{load} = 20 mA 通常 1.3 V
分解能	12 bit
SSIクロックレート	ST-分解能: 50 kHz2 MHz
モノフロップタイム	≤15 µs
データリフレッシュレート	≤1 µs
ステータスとバリティビット	要求に応じて

	EtherCAT インターフェイス (8.5868.12B2.B212)のパラメーター						
	コード	バイナリ					
	プロトコル	EtherNet / EtherCAT					
	モード	Freerun, Distributed Clock					
	LED診断 レッド	LED は次の障害状態でオンになります。 センサー エラー (内部コードまたは LED エラー) 電圧低下、過熱					
	グリーン点灯	LED は下記条件でオンになります: Preop-, Safeop または Op-State (EtherCAT ステータスマシーン)					
	2 x Link LEDs イエロー	LED は下記条件でオンになります (Port IN または Port OUT): リンク検知					

	Profinet インターフェイス (8.5868.12C2.C212)のパラメーター						
	コード	バイナリ					
	プロトコル	PROFINET 10					
	LED Link1/Link2	green = active link / yellow = data transfer					
	Ezturn Software for Profinet (エンコーダーと 共に供給)	 ・周期データの監視(位置、速度) ・非周期データの監視 (IMO、電子ネームプレート、エンコーダパラメータ、警告およびエラーメッセージ、プリセットなど) ・プリセットバリューの設置 ・バス祭中のファートウェアアップデート 					

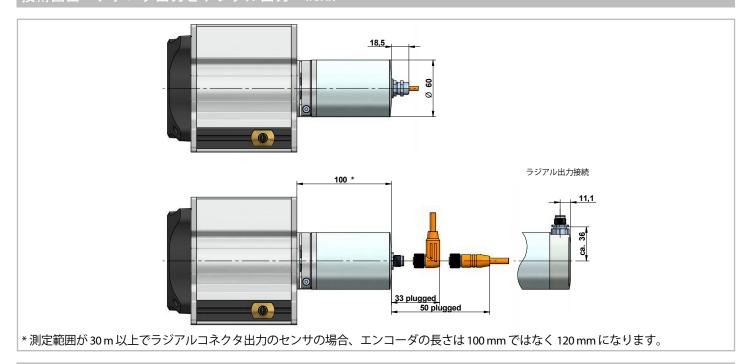
CANopenインターフェ	イス (CAN) (8.5868.122X.2122)のパラメーター
コード	バイナリ
インターフェイス	CAN High-Speed acc. to ISO 11898, Basic- and Full-CAN, CAN Specification 2.0 B
プロトコル	CANopenプロファイル、メーカー固有アドオン付 DS406 V3.2
ボートレート	10~1000 kbit/s (DIP スイッチ または ソフトフェアから設定可能)
ノードアドレス	1~127 (ロータリースイッチ または ソフトフェアから設定可能)
終端	DIPスイッチまたはソフトフェアから設定可能
SET ボタン (オプション)	ゼロまたは定義値オプション
LED	LED は次の障害状態でオンになります。 センサー エラー (内部コードまたは LED エラー) 電圧が低すぎる、過熱

ス (8.5868.123X.3122)のパラメーター
バイナリ
標準Profibus DP2.0(DIP 1924 Part 3), RS485ドライバーはガルバニック絶縁されています。
Profibusエンコーダープロファイル V1.1 Class 1& Class2 とメーカー固有のアドオン
最大 12 Mbit/s
1~127 (ロータリースイッチより設置)
DIP スイッチより設定
ゼロまたは定義値オプション
LEDは次の障害状態でオンになります。 センサーエラーまたはProfibusエラー

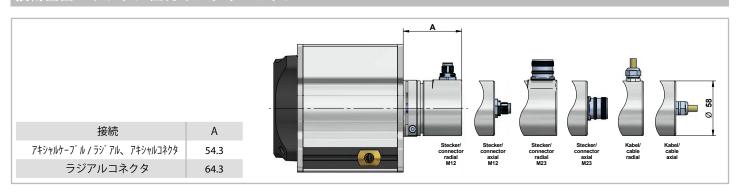


メカニカルデータ

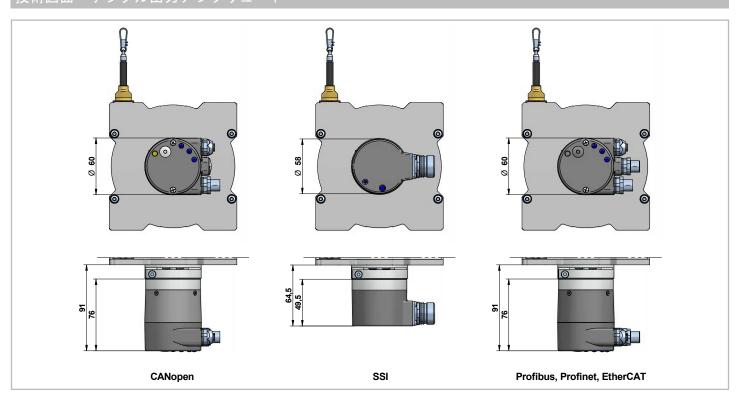
計測長 [m]	ワイヤ張力 F _{min} [N]	ワイヤ張力 F _{max} [N]	速度 V _{max} [m/s] ¹⁾	加速度 a _{max} [m/s²] ¹)
10	4.8	7.2	5	80
12	4.8	7.2	5	80
15	6.8	11.2	5	80
20	6.4	9.2	5	60
25	7.8	11.4	5	60
30	6.4	9.6	5	60
35	7.4	11.6	5	60
40	5.4	9	5	60
42.5	5.4	9	5	60


¹⁾ IP67オプション選択時60%減少します。SP61またはSP62選択時最大速度は 3 m/s減少します。

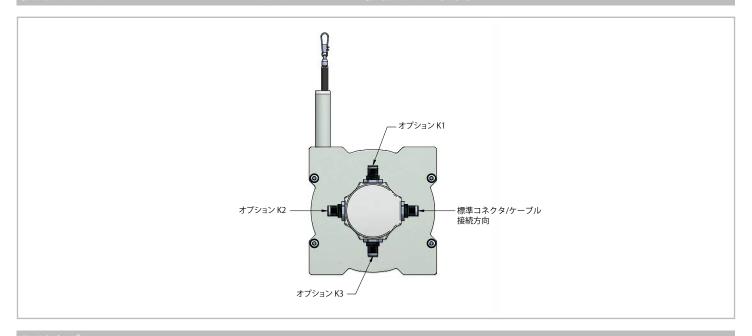
技術図面



ワイヤ引出方向の位置	10 m	12 m	15 m	20 m	25 m	30 m	35 m	40 m	42.5 m
計測長のスタート (X)	33	36	41	48	56	63	71	78	82
計測長の終わり (Y)	18	18	18	18	18	18	18	18	18


技術図面 アナログ出力とデジタル出力 WCAN

技術図面 デジタル出力インクリメンタル



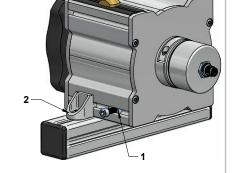
技術図面 デジタル出力アブソリュート

技術図面 オプション ワイヤ引出方向とコネクタ接続方向の変更

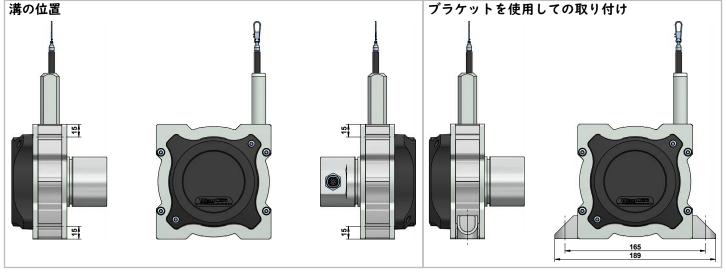
取付オプション

1. センサハウジングの溝を使用しての取り付け

付属しているスロットナットはハウジングの溝に容易に 挿入できます。スロットナットはM6ネジ用です。


測定範囲が20 m以下の各センサーには、2 つのスロットナットが付属しています。 測定範囲が25 m以上の各センサーには、4 つのスロットナットが付属しています。

このブラケットにはプレート、スラブに固定する為の M6ネジ用の穴があります。測定範囲が 20 m 以下の 各センサーには、2 つのブラケットが付属しています。 測定範囲が 25 m 以上の各センサーには、4 つの ブラケットが付属しています



注記:

センサーハウジングの溝、スロットナット、および、ブラケットは、Industrietechnik GmbH のアルミニウム ビルディングキットシステムと互換性があります。

オプション

オプション	オーダーコード	概要	
電気ケーブルまたはコネクタ (接続方向変更/アナログ出力タイプは除く: 図面 <mark>page 8</mark> 参照	K1, K2, K3	ワイヤ引出方向は「上」の時: 標準:接続方向「右」 K1:接続方向「上」 K2:接続方向「左」 K3:接続方向「下」	
直線性高	L02, L05	直線性向上 0.02 % (L02) or 0.05 % (L05)	
反転出力信号 (アナログ出力のみ)	IN	ロープを引き出すことでセンサーのアナログ 信号が増加します(標準)。オプションINは 信号を反転します。つまり、センサーの信号は ロープを引き出すことによって低下します。	inverted inverted Irange MR retracted extracted
合成ワイヤロープ	COR	耐摩耗性化コラミド製の合成ワイヤーロープで 熱膨張の影響を考慮して安定した温度での使用	
M4ピボット	M4	オプションのM4ネジ、長さ22mmのピボット式ロープ固定。貫通穴やM4ネジ穴への取付に最適です。	ねじれ防止付ロープ スリップ (標準)
アイレット	RI	ワイヤロープの先端にクリップの代わりにアイレットが装着されています。 内径20mm	
M6穴付き円柱ピン	ZH, ZR	ZH: M6穴付円柱ピン ZR: M6穴付円柱ピン+カラビナリング	
保護等級 IP67	IP67	センサが湿度の高い環境で動作する場合は、オプシ 使用すると、特別なシーリングのために出力信号に ことに注意してください。最大加速度と変位速度は	わずかなヒステリシスが発生する可能性がある
腐食防止オプション	СР	V4Aワイヤーロープ、ステンレス製ベアリング、 サーロープドラムには HARTCOAT®コーティングが 酸化であり、硬いセラミックのような層で腐食性を媒	施されています。このコーティングは硬質の陽極
腐食防止増強オプション (アナログ出力のみ)	ICP	ハウジングのコンポーネントとロープドラムル す。CP, IP67, M4のオプションも含まれます。	は、HARTCOAT®でコーティングされていま
使用温度範囲低温拡大オプション (アナログ出力のみ)	T40	特別なコンポーネントと低温グリースにより、! ことができます。	動作温度を-40℃(最高+85℃)まで下げる
スナップ保護	SP61, SP62	統合されたブレーキを使用することにより、ロオプションには、Ø $0.4\mathrm{mm}$ の 合成ワイヤー ロー低下します。 SP61 は測定範囲 $10\sim15\mathrm{m}$ 、SP62	-プが含まれます。 最大移動速度は 2 m/s に
TEDS コネクタ (アナログ・ケーブル出力のみ; 詳細について <u>TEDS</u>)	TD, TDP, TDPS	TD: アッセンブリ TDP: アッセンブリ+プログラミング TDPS: アッセンブリ+プログラミング + 計測点:	35

可変電子機器 - スクイーザ

アナログ出力バージョン5VTおよび10VTのドローワイヤセンサーには、VT-Electronicsと呼ばれる可変可能な内部電子機器が装備されています。センサーのポテンショメーターによって提供される信号は、VT-Electronicsによってデジタル化されます。このデジタル情報は、最初の電子機器により処理され、次に逆変換され、0~5Vまたは0~10Vのアナログ出力信号として出力されます。デジタル化により、スクイーザを使用してセンサを個別に構成できる2つの調整が可能です:

- ・ 測定範囲の可変。可変プロセスが成功したら、スクイーザをセンサーから取り外すと標準のケーブルまたはコネクタと 交換できます。
- ・個々の切り替えポイントの設定。スクイーザにより個別のオープンコレクタのスイッチングポイントを設定できます。 スイッチング信号は、多機能ラインMFLを介して送信されます。

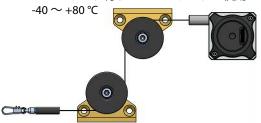
機能の詳細な説明は Squeezer manual を参照ください。

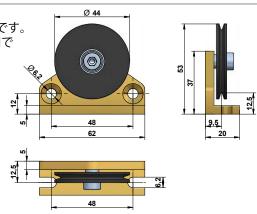
偏向プーリー - UR2

ロープはセンサーから垂直に引き出す必要があります。垂直からの最大変動は±3°です。 偏向プーリーにより、ワイヤーロープの方向が変更可能となり複数のプーリーを使用で きます。ロープクリップを偏向プーリーに通してはなりません。

標準ワイヤーロープ径0.5mmに対応。

足場材質: 陽極酸化アルミニウム(アルマイト)


スプール材質: POM-C


取り付け: 六角ソケットもしくはM6皿ネジによって垂直または

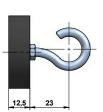
水平の取り付けが可能です。特別な低温グリースと

RSシーリング付ボールベアリングを使用しています。

温度:

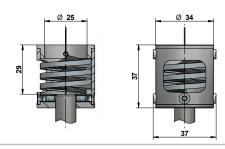
延長ロープ - SV

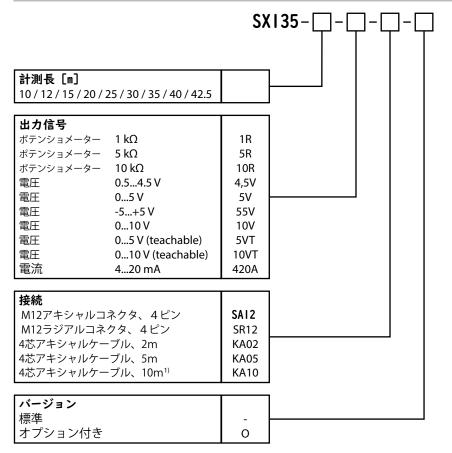

測定対象物とセンサーの間の距離を延長する為に、延長ロープを適用できます。ロープクリップを方向転換プーリーに通してはなりません。ご注文時に必要な長さを指定してください(XXXX)。最小の長さは150mmです:


SV1-XXXX: 延長ロープ (150...4995 mm) SV2-XXXX: 延長ロープ (5000...19995 mm) SV3-XXXX: 延長ロープ (20000...40000 mm)

長さ [mm]

マグネットクランプ - MGGI


マグネットクランプを使用して、ロープを金属製の物体にすばやく取り付けます。組み立ての必要はなく、ラバーコーティングにより滑らかな接触(二スを塗った表面など)を提供し、振動による滑りを防ぎます。磁石はネオジムコアで構成されており、粘着力が260Nに向上にしてします。フックにより、ロープクリップを簡単に取り付けることができます。



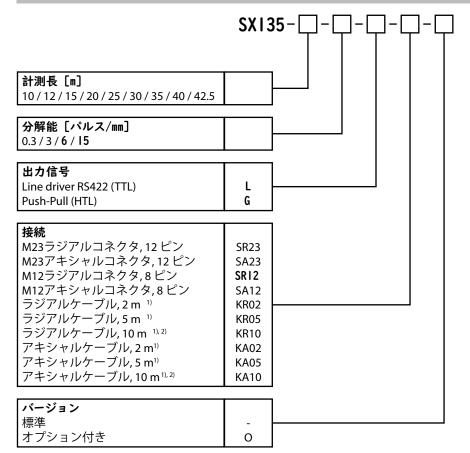
ロープクリーナー - RCS

RCSロープクリーナーを使用して、センサーの測定ロープから汚れを取り除きます。センサーの最大測定範囲は29mm減少し、RCSはオプションRIと互換性がないことに注意してください。

オーダーコード アナログ出力アウトプット

1) 上記以上の計測長を希望の場合はお問い合わせください。

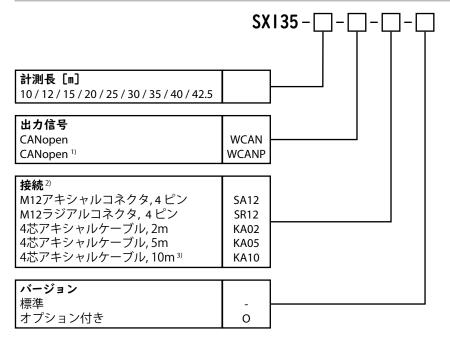
²⁾ TEDSコネクタについて詳細は別紙参照


太字:標準で短納期

オプション	概要 (<u>9^゚-ジ</u> 参照)
L05	直線性向上 ±0.05 %
IN	反転出力
COR	コラミド製合成ワイヤ
M4	M4ピボット
RI	アイレット
ZH	M6穴付き円柱ピン
ZR	M6穴付き円柱ピン+カラビナリング
IP67	保護等級 IP67
CP	腐食防止オプション
ICP	腐食防止増強オプション
T40	使用温度範囲低温拡大 -40+85℃
SP61	スナップ保護 (範囲 10m~15m)
SP62	スナップ保護(範囲 20m ~ 42.5m)
TD	TEDS: アッセンブリ ^ッ
TDP	TEDS: アッセンブリ+プログラミング♡
TDPS	TEDS: アッセンブリ+プログラミング+
	計測点:35 ²⁾

オプション	組み合わせできないオプション
L05	T40
M4	CP, ICP
RI	CP, ICP
ZH	CP, ICP
ZR	CP, ICP
IP67	ICP
CP	M4, RI, ZH, ZR, ICP
ICP	M4, RI, ZH, ZR, IP67, CP
T40	L05, SP61, SP62
SP61	MR >15 m, CP, ICP, T40
SP62	MR <20 m, CP, ICP, T40
TD	1R, 5R, 10R, SA12, SR12, TDP, TDPS
TDP	1R, 5R, 10R, SA12, SR12, TD, TDPS
TDPS	1R, 5R, 10R, SA12, SR12, TD, TDP

オーダーコード デジタル出力インクリメンタル



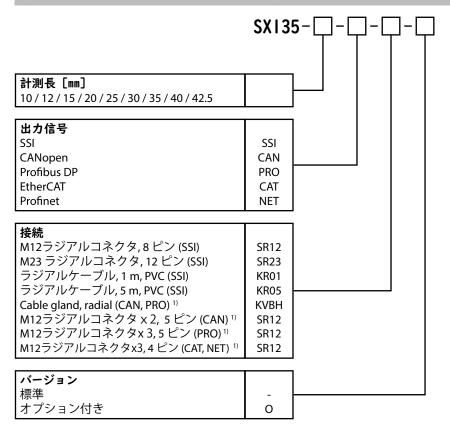
オプション	概要 (<u>9^° -ジ</u> 参照
K1	接続方向「上」
K2	接続方向「左」
K3	接続方向「下」
L02	直線性向上 ±0.02 %
COR	コラミド製合成ワイヤ
M4	M4ピボット
RI	アイレット
ZH	M6穴付き円柱ピン
ZR	M6穴付き円柱ピン+カラビナリング
IP67	保護等級 IP67
CP	腐食防止オプション
SP61	スナップ保護 (範囲 10m~15m)
SP62	スナップ保護(範囲 20m ~ 42.5m)

オプション	組み合わせできないオプション
L02	分解能0.3/3
M4	СР
RI	СР
ZH	СР
ZR	СР
CP	M4, RI, ZH, ZR
SP61	MR >15 m, CP
SP62	MR <20 m, CP

太字:標準仕様で短納期

オーダーコード デジタル出力アブソリュート CANOPEN (WCAN)

- リオフラインでスクイーザを介して構成可能
- ²⁾ WCAN:5芯 / WCANP:8芯
- 3) より長いケーブルをご希望の場合はお問い合わせ下さい


オプション	概要 (<u>9^゚-ジ</u> 参照)
COR	コラミド製合成ワイヤ
M4	M4ピボット
RI	アイレット
ZH	M6穴付き円柱ピン
ZR	M6穴付き円柱ピン+カラビナリング
IP67	保護等級 IP67
CP	腐食防止オプション
ICP	腐食防止増強オプション
T40	使用温度範囲 -40+85 ℃
SP61	スナップ保護 (範囲 10m~15m)
SP62	スナップ保護(範囲 20m ~ 42.5m)

オプション	組み合わせできないオプション
M4	CP, ICP
RI	CP, ICP
ZH	CP, ICP
ZR	CP, ICP
IP67	ICP
CP	M4, RI, ZH, ZR, ICP
ICP	M4, RI, ZH, ZR, IP67, CP
SP61	MR >15 m, CP, ICP, T40
SP62	MR <20 m, CP, ICP, T40

¹⁾ ラインドライバ: 10 芯 / プッシュプル: 8 芯

²⁾ より長いケーブルをご希望の場合はお問い合わせ下さい

オーダーコード デジタル出力アブソリュート

オプション	概要 (<u>9ペーシ</u> ゙参照)
K1	接続方向「上」
K2	接続方向「左」
К3	接続方向「下」
COR	コラミド製合成ワイヤ
M4	M4ピボット
RI	アイレット
ZH	M6穴付き円柱ピン
ZR	M6穴付き円柱ピン+カラビナリング
IP67	保護等級 IP67
CP	腐食防止オプション
SP61	スナップ保護 (範囲 10m~15m)
SP62	スナップ保護(範囲 20m ~ 42.5m)

オプション	組み合わせできないオプション
M4	СР
RI	СР
ZH	СР
ZR	СР
CP	M4, RI, ZH, ZR
SP61	MR >15 m, CP
SP62	MR <20 m, CP

¹⁾取り外し可能なバスターミナルカバー

SQUEEZER2M	電圧またはWCANP出力用アクセサリ,2mケーブル
SQUEEZER5M	電圧またはWCANP出力用アクセサリ,5mケーブル
SQUEEZER10M	電圧またはWCANP出力用アクセサリ, 10 mケーブル
UR2	偏向プーリー(ワイヤ径0.5mm用)
MGG1	マグネティッククランプ

SV1-XXXX 延長ロープ (150 mm ~ 4995 mm) SV2-XXXX 延長ロープ (5000 mm ~ 19995 mm) 延長ロープ (20000 mm ~ 40000 mm) SV3-XXXX ロープクリーナー RCS-SX135 1)

4ピンM12コネクタ	!シールドケーブル(フィメール), IP67
K4P2M-S-M12	2 m, ストレートコネクタ
K4P5M-S-M12	5 m, ストレートコネクタ
K4P10M-S-M12	10 m, ストレートコネクタ
K4P2M-SW-M12	2 m, アングラーコネクタ
K4P5M-SW-M12	5 m, アングラーコネクタ
K4P10M-SW-M12	10 m, アングラーコネクタ

アナログ出力用デジタルディスプレイ,2チャンネル

タッチスクリーン, 供給電圧: 18...30 VDC WAY-AX-S タッチスクリーン, 供給電圧: 115...230 VAC WAY-AX-AC

さらに情報の詳細とオプションは WAY-AX data sheet を参照ください。

4ピンM12メーティングコネクタ(フィメール), セルフアッセンブリ用

D4-G-M12-S ストレートコネクタ アングラーコネクタ D4-W-M12-S

スクイーザ接続用ケーブル(フィメールからメール)

K4P1,5M-SB-M12 1.5 m, 4芯シールドケーブル, 4ピンM12x2

8ピンM12コネクタ	シールドケーブル(フィメール, IP67
K8P2M-S-M12	2 m, ストレートコネクタ
K8P5M-S-M12	5 m, ストレートコネクタ
K8P10M-S-M12	10 m, ストレートコネクタ
K8P2M-SW-M12	2 m, アングラーコネクタ
K8P5M-SW-M12	5 m, アングラーコネクタ
K8P10M-SW-M12	10 m, アングラーコネクタ

8ピンM12メーティングコネクタ(フィメール), セルフアッセンブリ用

D8-G-M12-S ストレートコネクタ アングラーコネクタ D8-W-M12-S

HTL出力用デジタルディスプレイ,2チャンネル

WAY-DX-S タッチスクリーン, 供給電圧: 18...30 VDC タッチスクリーン, 供給電圧: 115...230 VAC WAY-DX-AC さらに情報の詳細とオプションはWAY-DX data sheet を参照ください。 12ピンM23コネクタシールドケーブル(フィメール), IP67

K12P2M-S-M23 2 m, ストレートコネクタ K12P5M-S-M23 5 m, ストレートコネクタ 10 m, ストレートコネクタ K12P10M-S-M23

12ピンM23メーティングコネクタ(フィメール), セルフアッセンブリ用

CON012-S ストレートコネクタ, メタルハウジング

HTL または TTL出力用 デジタルディスプレイ, 2 チャンネル WAY-DXM-S タッチスクリーン, 供給電圧: 18...30 VDC タッチスクリーン, 供給電圧: 115...230 VAC WAY-DXM-AC

さらに情報の詳細とオプションは WAY-DXM data sheet を参照ください。

アクセサリ デジタル出力アブソリュート CANOPEN (WCAN)

5ピンM12コネクタシールドケーブル(フィメール), IP67

K5P2M-S-M12 2 m, ストレートコネクタ 2 m, アングラーコネクタ K5P2M-SW-M12

スクイーザ接続用ケーブル(フィメールからメール)

K48P03M-SB-M12 0.3 m, 4芯シールドケーブル, 8 ピンM12, 4 ピンM12 8ピンM12コネクタシールドケーブル(フィメール), IP67

K8P2M-S-M12 2 m, ストレートコネクタ 2 m, アングラーコネクタ K8P2M-SW-M12

WCANP から CAN-Bus用アダプタケーブル (フィメールからメール)

K58P03M-SB-M12 0.3 m, 5芯シールドケーブル, 8ピンM12、5ピンM12

リロープクリーナーを使用すると、最大測定範囲が29mm短くなることにご注意ください。

アクセサリ デジタル出力アブソリュートSSI

8ピンM12コネクタシールドケーブル(フィメール), IP67

K8P2M-S-M12 2 m, ストレートコネクタ K8P5M-S-M12 5 m, ストレートコネクタ K8P10M-S-M12 10 m, ストレートコネクタ K8P15M-S-M12 15 m, ストレートコネクタ

8ピンM12メーティングコネクタ(フィメール), セルフアッセンブリ用

D8-G-M12-S ストレートコネクタ D8-W-M12-S アングラーコネクタ

SSI出力用デジタルディスプレイ,2チャンネル

WAY-SX-S タッチスクリーン, 供給電圧: 18...30 VDC WAY-SX-AC タッチスクリーン, 供給電圧: 115...230 VAC さらに情報の詳細とオプションは WAY-SX data sheet を参照ください。

12ピンM23コネクタシールドケーブル(フィメール), IP67

 K12P2M-S-M23
 2 m, ストレートコネクタ

 K12P5M-S-M23
 5 m, ストレートコネクタ

 K12P10M-S-M23
 10 m, ストレートコネクタ

 K12P15M-S-M23
 15 m, ストレートコネクタ

12ピンM23メーティングコネクタ(フィメール), セルフアッセンブリ用

CON012-S ストレートコネクタ,メタルハウジング

アクセサリ デジタル出力アブソリュート CAN OPEN (CAN)

5ピンM12コネクタシールドケーブル, IP67

 K5P2M-B-M12-CAN
 2 m, フィメールコネクタからオープンエンド

 K5P2M-SB-M12-CAN
 2 m, フィメールコネクタからメールコネクタ

 K5P2M-S-M12-CAN
 2 m, メールコネクタからオープンエンド

アクセサリ デジタル出力アブソリュート PROFIBUS

5ピンM12コネクタシールドケーブル, IP67

 K5P2M-B-M12-PROF
 2 m, フィメールコネクタからオープンエンド

 K5P2M-SB-M12-PROF
 2 m, フィメールコネクタからメールコネクタ

 K5P2M-S-M12-PROF
 2 m, メールコネクタからオープンエンド

その他

M12-PROF-AW 終端抵抗

アクセサリ デジタル出力アブソリュート FTHER CAT AND PROFINET

4ピンM12コネクタシールドケーブル(メール), IP67

 K4P2M-S-M12-CAT
 2 m, ストレートコネクタ

 K4P5M-S-M12-CAT
 5 m, ストレートコネクタ

 K4P10M-S-M12-CAT
 10 m, ストレートコネクタ

4ピンM12コネクタシールドケーブル, IP67

 K4P2M-SS-M12-CAT
 2 m, メールコネクタからメールコネクタ

 K4P5M-SS-M12-CAT
 5 m, メールコネクタからメールコネクタ

 K4P10M-SS-M12-CAT
 10 m, メールコネクタからメールコネクタ

注記:電力供給に追加ケーブルが必要となることに注意してください。"Accessories Analog Output"のリストから適切なケーブルを選択できます。

日本代理店

株式会社ヒロテック 103-0023 東京都中央区日本橋本町1-1-3 立石本町ビル6F Tel:03-5200-2201 Fax:03-5200-2212

Subject to change without prior notice.

WayCon Positionsmesstechnik GmbH

Email: info@waycon.de
Internet: www.waycon.biz

WayCon

Headquarters Munich Mehlbeerenstr. 4 82024 Taufkirchen

Tel. +49 (0)89 67 97 13-0 Fax +49 (0)89 67 97 13-250 Office Cologne Auf der Pehle 1 50321 Brühl

Tel. +49 (0)2232 56 79 44 Fax +49 (0)2232 56 79 45